
A Multimedia Interactive Environment
Using Program Archetypes:

Divide-and-Conquer

Paul Ainsworth
Svetlana Kryukova

Mail Stop 256-80
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125
email: ainswrth@csvax.caltech.edu

kryukova@cco.caltech.edu

Abstract
As networks and distributed systems that can exploit parallel computing

become more widespread, the need for ways to teach parallel programming
effectively grows as well. Even though many colleges and universities provide
courses on parallel programming [1], most of those courses are reserved for
graduate students and advanced undergraduates. There is a demand for ways to
teach fundamental parallel programming concepts to people with just a working
knowledge of programming. By using the idea of a software archetype, and
providing a learning environment that teaches both concept and coding, we hope
to satisfy this need. This paper presents an overview of the multimedia approach
we took in teaching parallel programming and offers Divide-and-Conquer as an
example of its use.

Introduction

Parallel computers offer the potential for affordable high performance computation; this
potential is limited by inadequate methods and tools for parallel programming and by an
insufficient number of practical textbooks, courses and teaching tools. Parallel networks of PCs
are being sold at prices that bring them well within the financial means of state and community
colleges, as well as small businesses. Many developing programmers now have access to parallel
technology, and therefore more effort should be donated to give them the insights that will allow
them to understand and use this technology. With this in mind we sought to create learning tools
that will provide people with opportunities to learn the fundamental principles of parallel
programming, and thus allow them to comprehend and exploit these principles.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
A Multimedia Interactive Environment Using Program Archetypes:
Divide-and-Conquer

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The guiding principle that shaped the design of our endeavor was the idea that the ultimate
goal of the group is to teach, and that the intrinsic learning value of our modules should always
be our paramount concern. With this idea in mind, we created an instructional package to teach
parallel archetypes. This package was designed to teach parallel programming to people with
varying amounts of computer science experience, with the focus on a person who is familiar with
the basics of structured sequential programming (the equivalent of an introductory programming
class at a college or university).

Many classes that teach proper algorithm design try to teach software principles to their
students by using one of two methods:

1) The student is given a problem to write an algorithm to solve, and after the student has
written the algorithm, the teacher presents the correct, efficient algorithm to the student.

2) The student is presented with several efficient and correct algorithms, and then asked to
write a correct and efficient algorithm to solve a new problem.

Though both of these approaches have merit, we feel that they do not emphasize the process
that is involved in writing good code. The student is presented with many correct algorithms,
and is then expected to know how to write them. Expecting a student to develop good coding
technique on their own after seeing correct algorithms is like giving a person a list of fifty
example functions and their derivatives, and then asking him to understand all the derivative
rules of calculus. In order to teach a student how to write correct and efficient algorithms, we
need to present the student with a methodology for finding the right answer instead of showing
the student the right answer and then hoping the student will somehow determine the method on
their own. We want our package to do more than teach the student how to write parallel
algorithms; we want to teach the student how to write correct and efficient parallel algorithms, as
well as prove the algorithms correct, and discuss their efficiency. The way we present methods
of solving problems in computer science using efficient algorithms is by teaching the student
about the various software archetypes using interactive multimedia.

What are archetypes?

An archetype [2] is a general framework for solving a problem in computer science. There
are many different archetypes, each one representing a unique strategy for developing an
algorithm when faced with a problem. Problems that can be solved using a specific archetype
conform to a recognizable pattern, and the majority of computer science problems can be solved
using one archetype from a relatively small set.

An archetype presents a solution strategy in a general format that is language-independent
and problem-independent. Each archetype presents the strategy it represents in terms of the
specifications of the functions and data structures that define it. For example, the Divide-and-
Conquer Archetype represents the solution strategy where a programmer, when faced with a
problem, takes the problem and breaks it down into some number of independent subproblems
that are smaller than, but of the same type as, the original problem. These smaller subproblems
are then recursively broken down further until a we have a subproblem small enough to solve

2

easily. Once we have a subproblem small enough to solve, we do so. We then take the answers
to all of the small subproblems, and merge their answers until we have the answer to the large
problem that we originally wanted to solve. Examples of the Divide-and-Conquer Archetype can
be found in such algorithms as Mergesort, Quicksort, and the Skyline problem [3].

Why are archetypes useful?

Archetypes provide a good way to teach programming because they naturally emphasize
software engineering principles in a format that is language-independent and problem-
independent. The archetypes not only discuss questions of algorithm development; they also
address efficiency, proof methods, and test suite design. Even though the Divide-and-Conquer
strategy is not new [3], the archetype format presents it in a way that has more learning utility
than other approaches.

Archetypes are also useful because they present a systematic approach to solving a problem
in computer science. Instead of presenting the student with just a problem and its solution,
archetypes allow us to present the student with the entire method that leads from problem to
solution.

Using a library of archetypes we can reduce the development of parallel and sequential
algorithms to two steps [4]. The first step is choosing an archetype that manifests traits similar to
the problem we want to solve. The second is to instantiate the chosen archetype to get a specific
algorithm. Using an archetype we can prove the correctness, evaluate the performance or
develop a test-suite for a particular application just as we developed the algorithm for the
application. So, even though using an archetype to solve a problem does require some creative
steps on the part of the programmer, the programmer now has the advantage of a structured
method for writing a good algorithm.

The eText Interactive Environment

Considering that future readers of our book are familiar with the format of a usual textbook,
we’ve chosen this format as a basis for eText. However, we expanded this format and made the
structure of our electronic textbook (shown in Figure 1) more tree-like. eText has a three-level
hierarchy of documents. Different levels correspond to the different types of presented
information - many archetypes, many applications for a particular archetype and many program
codes for a particular application. These levels are analogous to the chapters, sections, and
subsections of a standard textbook respectively. Throughout the remainder of this paper, we will
use the term "module" to refer to the documents containing archetypes, applications, and
programs.

The highest level of generality contains the archetypes themselves. eText will incorporate

3

chapters about Divide-and-Conquer, Dynamic Programming, Greedy Algorithms, and Hill-
Climbing Methods. The next level contains the application modules, which resemble the
archetype modules in both appearance and structure. While the archetype modules focus on
teaching the archetype, the application modules present a specific problem, and then describe
step-by-step how an algorithm to solve that problem can be created using the archetype. The
final level is the actual source code. A code library is being built that contains code for various
problems in a number of programming languages (such as C, Pascal, Fortran, Maisie [5] and -
Fortran M [6]). A code viewer allows the user to select the problem, the language, and the
archetype, and then see the code that solves the selected problem using the selected archetype,
written in the selected language. This allows the user to see how a large variety of problems can
be solved using a specific archetype, and it will also demonstrate the fact that a problem can be
successfully solved using more than one archetype, but not all archetypes will produce good
solutions for a specific problem. A simple editing environment will be included, which will
allow the user to create, edit, compile, and run programs in several different sequential and
parallel languages, so that the user can see how changing the various components of an
instantiated algorithm affects the execution of the algorithm.

Library of C
programs

Library of Pascal
programs

Library of C++
programs

Library of Fortran
programs

Divide-and-Conquer
Archetype

Dynamic ProgrammingOther Archetypes

Navigational Tool with
General Information about

Archetypes

Mergesort

Library of Archetypes

Skyline FFT
Other

applications
Other

applications
All points

shortest path
Matrix

Multiplication

Library of CC
programs

Library of Maisie
programs

Library of Fortran M
programs

Library of CC++
programs

Library of Code

Sequential Code Parallel Code

Library of Application

Figure 1. The structure of eText.

4

The central part of all eText modules is a multisectional text discussing the different facets of
an archetype. Even though this text can be used as a stand-alone textbook, eText takes advantage
of the computer’s capabilities by employing multimedia in the form of sounds, animation, static
graphics, and interactive figures to make its representation more useful and easier to understand.

Since the package was designed to be useful to audiences with varying levels of computer
science background, we wanted the modules to have a format that allowed the user to determine
how much explanatory material was necessary. A person who is unfamiliar with the idea of
archetypes might want to go through and use the module as a full electronic textbook, while a
person with more knowledge may not require the supplementary teaching material, and may wish
to use the module for reference or review. With this in mind, the modules were designed to
allow for two different levels of instructional depth, "Brief" and "Introductory." The Brief mode
contains text written as a concise formal description of the archetype or problem with minimal
detail. This amount of information is sufficient for experienced programmers and people already
familiar with archetypes. The text of the "Introductory" mode includes informal descriptions,
examples, interactive figures and animation, which are useful for beginners.

As we pointed out earlier, for the ease of navigation, the interface and the structure of the text
is consistent throughout the chapters. Both tracks in any archetype consist of eight sections:

1) Basic Idea: A description of the solution strategy presented by the archetype.
2) Algorithm Development: A description of how one would develop an algorithm using the

archetype, with a list of the functions and procedures of the archetype and their specifications.
3) Algorithm: A presentation of the general form of the algorithm.
4) Parallel Implementation: A generalization of the archetype with regard to parallel

computing, which discusses how an algorithm is implemented on a parallel machine, and any
specific points or subtleties that arise when using a parallel computer.

5) Reasoning: A discussion of how one would prove a developed algorithm.
6) Testing: A discussion of how to best test an algorithm designed using the archetype.
7) Performance Analysis: A discussion of the efficiency and complexity of the algorithms

based on the archetype’s strategy, with special emphasis placed on how the efficiency and
complexity vary between the sequential and parallel case.

8) Applications: A list of various instantiated algorithms that use the archetype’s method.

The electronic textbook shown in Figure 2 is the main window for an archetype. All of the
chapters were designed to share the same general layout so that the interface for all of the
chapters would become familiar to the user. The main text, which comprises the lesson for each
archetype, is located in a text window along the left half of the window. The main window
includes also several objects for navigational purposes. The contents of the main window are:

1) The main text window that contains the written presentation of the module. In addition to
the two reading modes, the user is given further control of the depth of the material through the
use of hyperlink [7] buttons that are placed throughout the text of the Introductory track,
controlling the secondary windows that contain supplementary diagrams and interactive figures
(examples of secondary windows opened by hyperlink buttons are shown in Figures 3, 4, and 5).

5

The supplementary figures are a useful learning tool, but could be tedious to someone who
knows the material or who only wants a brief description of the ideas for reference while
programming. With this in mind, the modules are structured so that all supplementary figures are
user-activated and completely optional. This system allows the user to view the material with as
little narration as desired, and insures that the user will not have to view any supplementary
material that emphasizes ideas that he already understands.

Glossary text window

Main text window

Quick reference section buttons

Reading mode switches

Next page/Previous page
 buttons

Hyperlink buttons

"Find in glossary" button

Figure 2. The features of the electronic textbook.

2) Quick reference section buttons, which form the table of contents for the module. Each
button is labeled with the name of a section. When the user presses a table of contents button, the
text automatically scrolls to make the corresponding section visible.

3) Reading mode switches that allow the user to determine the depth of the text by choosing
the "Brief" or "Introductory" mode.

4) Next page/Previous page buttons that provide quick paging of the main text window.
5) The "Find in glossary" button and glossary text window that are included in case a user is

not familiar with the document’s computer science terminology. Pressing the "Find in glossary"
button causes the definition of the word selected in any of the chapter’s text windows to appear

6

in the glossary text window.

Our first implementation of the format and hierarchy described above was the production of
the Divide-and-Conquer Archetype, and several application modules for that archetype. We
present the details of this module to illustrate the electronic textbook.

Case Study: the Divide-and-Conquer Archetype

The Divide-and-Conquer chapter includes modules containing applications for Mergesort and
Skyline [3]. For each module the text of both the brief and introductory reading modes consist of
the same collection of 8 sections that cover similar aspects of the Divide-and-Conquer Archetype
and its applications. The titles of the sections are reflected in the titles of the quick reference
buttons shown in Figure 2. The sections for the Divide-and-Conquer Archetype are:

1) Basic Idea. This section presents the main idea of solving small problems directly by
using some known simple algorithm and splitting large problems recursively, until they are small
enough to be solved directly. In the introductory mode this section contains an informal example
of using the Divide-and-Conquer strategy for moving and sorting the books in the library,
supported by two slide shows illustrating moving the library and the sorting of numbers using
Mergesort. The purpose of this example is to demonstrate the concepts of the archetype in an
informal way. In the brief mode, this section contains only a few sentences description of the
main idea without any examples or supporting slide shows.

2) Algorithm Development. This section presents the specifications of the primary
functions, which can be instantiated to develop an algorithm:

size(in P), which returns the size of the problem P;
base_case(in P), which returns the boolean value true if and only if the problem P is a base-case

problem;
find_base_case_solution(in P; out S), which produces the correct solution S to the base-case

problem P ;
split(in P; out P1, P2, ..., Pn, Other), which splits the problem P into the subproblems P1, P2, ...,

Pn and some other information Other that will be used in the merge procedure;

merge(in S1, S2, ..., Sn, Other; out S), which correctly merges subproblems S1, S2, ..., Sn and

some other information Other into the solution S to the original problem P;
constant base_case_size, which is the size of the largest base-case problem.

The brief and introductory modes for this section differ in that there are more informal
explanations and two supporting slide shows in the introductory mode. Figure 3 presents the last
slide of one of the slide shows. This slide show emphasizes the basic steps in algorithm
development for a problem determined to fit the Divide-and-Conquer pattern, and demonstrates
how the sequential algorithm works for the general problem. Part of this slide show focuses the
reader’s attention on the archetype’s functions and their properties. As all slide shows in the

7

modules, this slide show is accompanied by voice narration, which can be switched on or off
using the "Sound" switch.

Figure 3. Supporting slide show describing basic steps
in the Divide-and-Conquer algorithm development.

3) Algorithm. This section presents the language-independent description of the Divide-
and-Conquer Archetype in terms of the functions and procedures developed in the preceding
section.

8

procedure divide_and_conquer(in P; out S)
begin

if base_case(P) then base case
find_base_case_solution(in P; out S)

else begin larger than base case
split(in P; out P1, P2, ..., Pn, Other);

divide_and_conquer(in P1; out S1);

.....
divide_and_conquer(in Pn; out Sn);

merge(in S1, S2, ..., Sn, Other; out S);

end
end;

In addition to this description, the introductory text of this section includes a slide show that
shows how the Divide-and-Conquer Archetype can be instantiated for the example of moving
and sorting the books in a library.

4) Parallel Implementation. This section addresses the issues of algorithmic development,
proof of correctness and performance evaluation, specifically for the parallel implementation of
the Divide-and-Conquer Archetype. In particular, this section discusses the two main ways that
the Divide-and-Conquer method can be implemented in parallel:

1) An implementation where the split, merge, and solving of subproblems are all done in
parallel.

2) An implementation where the splitting and merging are done sequentially, while the
solving of the subproblems is done in parallel.

5) Reasoning. This section discusses general methods of proving a Divide-and-Conquer
algorithm using mathematical induction on the size of the problem. The proof of a Divide-and-
Conquer algorithm requires the following steps:

- the proof of the correctness and termination of all functions and procedures in the
algorithm.

- assuming that functions, split(), merge(), base_case() and find_base_case_solution() are
correct, the correctness of the algorithm as a whole must be proved using mathematical
induction. If problem P has size base_case_size or less it is a base-case problem. Therefore the
function base_case() returns true and the function find_base_case_solution() returns the correct
solution to the problem P.

- the induction hypothesis is stated, saying that the algorithm finds the correct solution to a
problem of size k, where k >= base_case_size;

- then using the induction hypothesis and the fact that for any base-case problem, the
algorithm returns the correct solution, the algorithm is proved to be correct for solving problem
of size k+1.

6) Testing. This section contains general recommendations for the collection of test-suites
for the developed algorithm. For Divide-and-Conquer, recommendations on the size of the test
problems are made. All procedures and functions of the archetype must be tested separately and

9

together. Tests for the function find_base_case_solution() should include tests for all different
categories of base-case problems. Tests for other procedures, base_case(), split() and merge(),
should include problems of sizes,

- base_case_size,
- base_case_size + 1,
- base_case_size + 2,
- n*base_case_size and problems with larger size.

7) Performance Evaluation. This section addresses issues of performance evaluation, such
as analyzing the performance of some general application of the Divide-and-Conquer Archetype
based on the time-complexity of the split and merge procedures and size and number of
subproblems produces by the split procedure. For most applications of the Divide-and-Conquer
Archetype, the performance evaluation can be done just by using general formulas derived in this
section defined by the values of the following parameters:

S is the size of the problem;
n is the number of subproblems the non base-case problem is split into;
b is such number that the size of the largest subproblem is S/b; and
k is such number that the time-complexity of the split and merge procedures is O(Sk).

The formulas derived in this section defined in terms of the parameters listed above are:
n < bk : T(S) = O(Sk);
n = bk : T(S) = O(Sk*logbS); and

n > bk : T(S) = O(Slogbn).

Figure 4 represents the interactive figure that is part of the "Performance Evaluation" section.
The purpose of this interactive figure is to demonstrate the difference between three time-
complexity formulas derived in the section and allow readers to compare the same functions for
different values of parameters. The interactive figure draws three time-complexity functions for
each of the cases described in the archetype, and shows the user how these functions vary with
respect to each other and with respect to three reference functions (the reference functions
represent the common case where n = b = 2, and are always shown). The values of the
parameters b and n can be entered using text-fields in the "Graph Inspector." Additionally, the
inspector of the figure allows the user to choose which functions to draw and to choose option of
removing or not removing old functions when drawing new ones.

10

Background reference function

Function defined by parameters n and b in
the inspector

User defined parameters

Time-complexity functions
to plot

Figure 4. Supporting interactive figure showing
 time-complexity diagram of the Divide-and-Conquer Archetype .

8) Applications. This section lists the problems for which the Divide-and-Conquer
Archetype can be used. There are such applications as Mergesort, Fast Fourier Transform,
Nearest Neighbor and Skyline [3]. Chapters about Mergesort and Skyline are already developed.

Figure 5 shows the window containing the interactive figure from the chapter about the
Skyline problem. The purpose of this figure is to explain the concept of the Skyline problem.
This figure is part of the "Basic Idea" section of the chapter about the Skyline application of the
Divide-and-Conquer Archetype. This figure allows the user to design a set of buildings using the
mouse and edit the set using the "Building editor" part of the inspector. To illustrate the Skyline
problem, the user’s set of buildings is solved by the interactive figure so that the reader can see
what outputs are created for given inputs. The process of solving the problem can be
manipulated by buttons in the "Problem" part of the inspector. This interactive figure uses the
actual Divide-and-Conquer algorithm to find the skyline for the entered set of buildings.

11

Figure 5. Supporting interactive figure illustrating
the inputs and outputs for the skyline problem.

Even though the interactive figures and slide-shows in the eText modules let the student take
a more active role in the learning process than a standard textbook, feedback on the material
being taught is still very important to insure that the student fully understands the important ideas
in each section. Therefore, we produced a quiz module, which presents the student with multiple
choice questions that help reinforce the central ideas of each section, as well as subtle points that
the student might not have recognized. For the chapter on the Divide-and-Conquer Archetype
the feedback took the form of a review quiz using the same idea of the interactive environment
(Figure 6.). The first questions review different aspects of the general archetype; and the rest of
the questions focus on problem solving. The student is presented with the problem of string
matching, and is then asked questions as to how he or she can solve the problem using the
Divide-and-Conquer Archetype. Each incorrect answer results in an explanation of why the
answer is incorrect, and each correct answer results in an explanation of why the answer is
correct. Our experience indicates that these quizzes are proven to be a helpful supplement to the
book; the questions force students reread some of the sections they didn’t understand fully.

12

Figure 6. Sample question from the Divide-and-Conquer quiz

Conclusions

A unique feature of our electronic textbook is the content-driven material presented in the
various modules. The idea of teaching using archetypes is a new one, but one that we feel has
definite merit. Teaching archetypes not only emphasizes good software principles, but also
provides the user with a relatively small arsenal of solution strategies that can help solve many
computer science problems.

Even though the idea of using computers as learning tools is not new, nor is the idea of the
electronic textbook, we believe that our approach to the electronic textbook to be innovative in its
learning value. Instead of simply taking a textbook and transcribing the text from the book to an
online word processor, we have created this electronic textbook from the ground up, taking full
advantage of the power and versatility of the computer medium. We not only present the
information in a way that no standard textbook could; we also provide the user with the
opportunity to view code in several different parallel and sequential notation versions of C, C++,
Pascal and Fortran. In the future we will provide a simple editing environment where the user
can create, edit, compile, and run programs.

13

The modules discussed will be used this October to help teach the Computer Algorithms
class at Caltech. We will use the students’ input to further refine our modules. Since we strongly
feel that using computers to teach computer science is a valid idea, we also plan to make modules
that teach other archetypes (such as Branch-and-Bound and Greedy Algorithms), as well as other
principles of computer science (such as Global Snapshots and Information Channels). Once we
have several modules in a finished form, we will distribute them to universities. We intend for
other schools to extend our work by developing modules of their own. All of our modules will
remain non-copyrighted, so that they can be distributed and modified freely. We believe that the
electronic textbook has incredible potential as an educational tool, and it is the ultimate goal of
the eText project to see that this potential is realized.

Acknowledgements

The eText project is part of a larger effort, led by Mani Chandy at Caltech, to develop
methods and tools to aid in the software engineering of parallel programs. The methods deal
with the systematic development of parallel programs starting from specifications - and in many
cases the specification is a sequential program that is required to be "parallelized." The tools
support reasoning about parallel programs, and debugging on workstations, and then transporting
parallel programs from workstations to parallel machines. Multimedia and archetypes play
central roles in the overall effort. The development of eText technology was supported by ARPA
under grant N00014-91-J-4014, and the development of eText chapters on scientific applications
was supported by NSF under cooperative agreement CCR-9120008.

We would like to thank to Rohit Khare for his contributions to this paper and the project. We
are also grateful to the following people who have been helpful consultants throughout the course
of the eText project: Tal Lancaster, Berna Massingill, Paolo Sivilotti, and John Thornley.

Special thanks go to Adam Rifkin for his time and feedback, which contributed greatly to this
paper.

This research is carried out under the supervision of Prof. K. Mani Chandy and we would like
to thank hem for his guidance.

References

[1] R. Miller. The Status of Parallel Processing Education: 1993. State University of New
York, Buffalo, 1993.

[2] K. M. Chandy and A. Rifkin. An Archetype-Based Approach to Parallel Program Libraries.
Technical Report forthcoming, Computer Science Department, California Institute of
Technology, 1993.

[3] B.M.E. Moret and H.D. Shapiro. Algorithms from P to NP - Volume I: Design and
Efficiency, Benjamin/Cummings Publishing Company, 1991.

[4] A. Rifkin. An Interactive Environment for Teaching Parallel Programming. Technical
Report TR-CS-93-13, Computer Science Department, California Institute of Technology,

14

1993.
[5] R. L. Bagrodia. Designing Efficient Simulations Using Maisie. Proceedings of 1991 Winter

Simulation Conference, December 8-11, 1991, Phoenix, Arizona, p. 243-247.
[6] I. T. Foster, K. M. Chandy. Fortran M: A Language for Modular Parallel. Technical

Report MCS-P327-0992, Mathematics and Computer Science Division, Argonne National
Laboratory, 1992.

[7] B. Cotton, R. Oliver. Understanding Hypermedia. Phaidon Press Ltd, 1993.

15

